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Immunization of complex networks
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Complex networks such as the sexual partnership web or the Internet often show a high degree of redun-
dancy and heterogeneity in their connectivity properties. This peculiar connectivity provides an ideal environ-
ment for the spreading of infective agents. Here we show that the random uniform immunization of individuals
does not lead to the eradication of infections in all complex networks. Namely, networks with scale-free
properties do not acquire global immunity from major epidemic outbreaks even in the presence of unrealisti-
cally high densities of randomly immunized individuals. The absence of any critical immunization threshold is
due to the unbounded connectivity fluctuations of scale-free networks. Successful immunization strategies can
be developed only by taking into account the inhomogeneous connectivity properties of scale-free networks. In
particular, targetedimmunization schemes, based on the nodes’ connectivity hierarchy, sharply lower the
network’s vulnerability to epidemic attacks.
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I. INTRODUCTION In homogeneous networks, an epidemic occurs only if the
rate of infection of “healthy” individuals connected to in-
The relevance of spatial and other kinds of heterogeneitfected ones exceeds the so-callepgidemic threshotdin
in the design of immunization strategies has been widelyther words, if the disease cannot transmit itself faster than
addressed in the epidemic modeling of infectious diseasege time of cure, it dies oitl,2]. In heterogeneous networks,
[1,2]. In particular, it has been pointed out that populationon the other hand, it is well-known that the epidemic thresh-
inhomogeneities can substantially enhance the spread of digtd decreases with the standard deviation of the connectivity
eases, making them harder to eradicate and calling for spgfistribution [1]. This feature is paradoxically amplified in
cific immunization strategies. This issue assumes the greategts|e-free networks that have diverging connectivity fluctua-

nmet:[Aa;lbr(I)(hc fncijdneuirnaltﬁyStenﬁléﬂ.vTrr]e comp!ﬁﬁlt);]otfhthesri ninfinite network, an epidemic threshold below which dis-
eworks resides € small average path 'engins among,qoq cannot produce a major epidemic outbreak or the inset

any two nodes(small-world property, along with a large an an endemic state. SF networks are, therefore, prone to the

degree of local clustering. In other words, some speci di 4 th ist £ infecti hat .
nodes of the structure develop a larger probability to estapzPreacing and the persistence of infections, whatever viru-
gence the infective agent might possess.

lish connections pointing to other nodes. This feature ha ; . , . ,
dramatic consequences in the topology of scale{f&& net- In view of this weakness, it becomes a major task to find
works [5—7] that exhibit a power-law distribution optimal immunization strategies oriented to minimize the

risk of epidemic outbreaks on SF networks, task with imme-
diate practical and economical implications. This paper pre-
P(k)~k™” D sentsa parallel comparison of the effect of different immu-
nization schemes in the case of two different complex

for the probability that any node h&sconnections to other networks: the Watts-Strogatz modél and the Baralsi and
nodes. For exponents in the range =<3, this connectivity ~Albert model[5]. The first is a homogeneous network exhib-
distribution implies that, for large network sizes, the nodesting small-world properties, while the second one is the pro-
have a statistically significant probability of having a very totype example of SF network. By studying the susceptible-
large number of connections compared to the average coirfected-susceptible modgR] in presence of progressively
nectivity (k). This feature contrasts with what is found for greater immunization rates, we find that uniformly applied
homogeneous network@ocal or nonlocal in which each immunization strategies are effective only in complex net-
node has approximately the same number of lifks k) works with bounded connectivity fluctuations. On the con-
[8,9]. The extreme heterogeneity of SF networks finds therary, in SF networks the infection is not eradicated even in
most stunning examples in two artificial systems, the World-the presence of an unrealistically high fraction of immunized
wide web[5,10] and the Interneft6,11,13. Along with these individuals. Actually, SF systems do not have any critical
technological networks, it has also been pointed out thafraction of immunized individuals and only the total immu-
sexual partnership networks are often extremely heterogetization of the network achieves the infection’s eradication.
neous[1,13,14, and it has been recently observed that theln order to overcome these difficulties we define optimal
network of sexual human contacts possesses a well-definéghmunization strategies that rely on the particular SF struc-
scale-free naturgl5]. ture of the network. The developed strategies allow us to
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achieve the total protection of the network even for ex-The second term represents the average density of newly
tremely low fractions of successfully immunized individuals. infected nodes generated by each active node. This is pro-
portional to the infection spreading rate the number of
Il. THE MODEL links emanating from each node=(k), and the probability
. . . . that a given link points to a healthy node,—p(t)]. After
In order to estimate the effect of an increasing density Oﬁmposing the stationary conditiafp(t)/dt=0, the most sig-

immune individuals in complex networks, we will investi- nigeant and general result is the existence of a nonzero epi-
gate the standard susceptible-infected-susceptit3&S demic threshold\C=<k>‘1 [2] such that

model[2]. This model relies on a coarse-grained description

of individuals in the population. Namely, each node of the p=0 if N<\g, 3)
graph represents an individual and each link is a connection
along which the infection can spread. Each susceptible p~A—N\; if A=\, (4)

(healthy node is infected with rate if it is connected to one

or more infected nodes. Infected nodes are cured and beconh other words, if the value ok is above the threshold
again susceptible with rai& defining an effective spreading =\, the infection spreads and becomes endemic. Below it,
rate A= v/ (without lack of generality, we sef=1). The A<\, the infection dies out exponentially fast. The exis-
SIS model does not take into account the possibility of indi-tence of an epidemic threshold is a general result in epidemic
viduals’ removal due to death or acquired immunizafi@gh =~ modeling, present also in different models such as the
and thus individuals run stochastically through the cycle sussusceptible-infected-removed modg2]. In analogy with
ceptible— infected— susceptible. This model is generally critical phenomen@19], this kind of behavior can be identi-
used to study infections leading to endemic states with died as an absorbing-state phase transition, in whigiays

stationary average density of infected individuals. the role of the order parameter in the phase transitionxand
is the tuning parameter, recovering the usual mean-field be-
A. Homogeneous complex networks havior[19].

A wide class of network models8,9] have exponentially
bounded connectivity fluctuations. A paradigmatic example
of this kind of networks that has recently attracted a great This standard framework is radically changed in the class
deal of attention is the Watts-Strogd'S) model[9], which  of SF networkg 16,17, in which the probability distribution
is constructed as follows: The starting point is a ring with  that a node hak connections has the forf(k)~k™” and
nodes, in which each node is symmetrically connected witlthe connectivity fluctuations(k?), diverge in infinite net-
its 2K nearest neighbors. Then, for every node each linkworks for any value 2 y<3. The paradigmatic example of
connected to a clockwise neighbthus K links for each ~ SF network is the Barasaand Albert(BA) model[5]. The
node is kept as originating from the original node and re- construction of the BA graph starts from a small numimgr
wired to a randomly chosen target node with probabitity of disconnected nodes; every time step a new vertex is
This procedure generates a random graph with a connectivigdded, withm links that are connected to an old nodeith
distributed exponentially for large and an average connec- probability IT(k;) =k; /= k;, wherek; is the connectivity of
tivity (k)=2K. It is worth remarking that even in the case theith node. After iterating this scheme a sufficient number
p=1 the network keeps the memory of the construction al-of times, we obtain a network composed Nynodes with
gorithm and is not equivalent to a random graph. In fact, byconnectivity distributionP(k) ~k ™3 and average connectiv-
definition each node emanates at least¢Himks which have ity (k)=2m. For this class of graphs, the absence of a char-
been rewired from the clockwise neighbors to randomly choacteristic scale for the connectivity makes highly connected
sen nodes; a property that affects also the clustering propenodes statistically significant, and induces strong fluctuations
ties of the graphfor details see Ref.18)). in the connectivity distribution that cannot be neglected. In

For the class of exponentially bounded networks, one cawnrder to take into account these fluctuations, we have to relax
generally consider that each node has roughly the same nurthe homogeneity assumption used for homogeneous net-
ber of links,k=(k), and, therefore, we can consider them asworks, and consider the relative densjiy(t) of infected
fairly homogeneous in their connectivity properties. At anodes with given connectivitk; i.e., the probability that a
mean-field level, the equation describing the time evolutiomode with k links is infected. The dynamical mean-field
of the average density of infected individuglét) (preva- equations can thus be written 6,17

lence is
dpi(t)
G = PO L= p(D]OG), ()

B. Scale-free networks

dp(t)
—ar = PO p(1)]. el
where also in this case we have considered a unity recovery
The mean-field character of this equation stems from the faatate. The creation term considers the probability that a node
that we have neglected the density correlations among theith k links is healthy] 1—p,(t)] and gets the infection via
different nodes, independently of their respective connectivia connected node. The probability of this last event is pro-
ties. The first term on the right-hand sidens) in Eq. (2) portional to the infection rata&, the number of connections
considers infected nodes becoming healthy with unit ratek, and the probability® (p(t)) that any given link points to
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an infected node. The probability that a link points to a node Obviously, (k?) assumes a bounded value in finite size
with s links is proportional tssP(s). In other words, a ran- networks, defining an effective threshald(N)>0 due to
domly chosen link is more likely to be connected to an in-finite size effects, as customarily encountered in nonequilib-
fected node with high connectivity, yielding rium phase transitiongl9]. This epidemic threshold, how-
ever, is not arintrinsic quantity as in exponential networks
and it is vanishing for increasing network sizes; i.e. in the
thermodynamic limit. Since real networks have always a fi-

; kP(K) pi(t)

Opt)=—, (6)  nite size, however, it is interesting to calculate how the epi-
> sP(s) demic threshold scales with the system $i2&]. By consid-
s ering the continuousk approximation, it is possible to

calculate the finite size distribution moments &k")
zf':;k”P(k)dk, wherek is the largest connectivity present
in the finite network. For networks composed¥yodesk,
is obviously an increasing function ®. In the particular
N case of the BA model, we readily obtajk)=2m and(k?)
PTINKO (7) =2m? In(k./m) ask.— . Substituting this values in the Eq.
(10) we obtain a threshold .=[mIn(k./m)] % In order to
find the size dependence ®f, we have to relate the maxi-
mum connectivityk, with the network sizeN. This relation
is given byk.=mNY2[20,22, yielding finally a threshold

whereXsP(s) is identical to(k) by definition. In the sta-
tionary state[dpy(t)/dt=0], Eqg. (5) yields the following
infected node density form:

By inserting the above expression fog in Eq. (6), we ob-
tain the self-consistency equation

0= S Kp(k) <O (®8) K 1
<k> k l+)\k®’ )\C(N):@Fv'n(N).

(12

where® is now a function of\ alone[16,17. The solution
©=0 is always satisfying the consistency equation. A non-This result can be generalized to SF networks with an arbi-
zero stationary prevalence,(# 0) is obtained when the rhs trary connectivity distribution, which show an epidemic
and the Ihs of Eq(8), expressed as function 6, cross in ~ threshold vanishing as a power-law behaviorNnwith an
the interval 6<@<1, allowing a nontrivial solution. It is €xponent depending on the connectivity expongh23].
easy to realize that this corresponds to the inequality

q I1l. UNIFORM IMMUNIZATION STRATEGY

T Ek kP(Kk)

=1 9 The simplest immunization procedure one can consider
0=0 consists of the random introduction of immune individuals in
the population1], in order to get a uniform immunization
being satisfied. The value of yielding the equality in Eq.  density. Immune nodes cannot become infected and, thus, do

(9) defines the critical epidemic threshald, that is given  not transmit the infection to their neighbors. In this case, for

vl

by a fixed spreading rate, the relevant control parameter is the
immunity g, defined as the fraction of immune nodes present
2 KP(K)\ K in the network. At the mean-field level, the presence of uni-
K (k?) (k) form immunity will effectively reduce the spreading rate
T:W)\czlzﬁ\c:@- (10 py a factor (1-g); i.e. the probability of finding and infect-

ing a susceptible and nonimmune node. By substituling
—N(1—g) in Egs. (2) and (5) we obtain the prevalence

This result implies that in SF networks with connectivity . . ; o
behavior for progressively larger immunization rates.

exponent 2< y<3, for which(k?)— o, we havex .=0. This o
fact implies in turn that for any positive value @af the in- In homogeneous networks, such as the WS model, it is

fection can pervade the system with a finite prevalence, in gasy to show thf"‘t in the case qf a .consl?anthe stationary
sufficiently large network16,17). For small\ it is possible prevalence obtained from E() is given by

to solve explicitly Eq.(8) for SF networks and calculate the
prevalence in the endemic stategas =P (k) pi as shown in
Refs.[16,17]. Calculations can be carried out by using the )
continuousk approximation, valid for largé [20], that as- p~9c—9 if g=<gc. (14)
sumeg k™) = [ k"P(k)dk, wheremis the minimum number , o o .

of connections of any node arfé(k) is a properly defined Here,g. is .the cnucgl immunization valug above wh|clh the
probability density of connections. For the particular case offensity of infected individuals in the stationary state is null
the BA network we hav@(k) = 2m’k 2 [5], that in the limit ~ Nd depends on as

of an infinitely large network yields the prevalende,17]

p=0 if g>gc, (13

A
p=2 exp— L/m\). (12) 9=\

(15
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FIG. 1. (8 Reduced prevalencgy/p, from computer simulations of the SIS model in the WS network with uniform and targeted
immunization at a fixed spreading rate=0.25. Extrapolation of the linear behavior p§ for the largest immunization values yields an
estimate of the critical immunitg.=0.385.(b) Typical plots ofp4(t) as a function of time, averaged over 100 starting configurations, for
the SIS model in WS networks with uniform immunization, for different valueg. &from top to bottomg=0.1, 0.14, 0.35, and 0.43. For
the last value ofj (above the critical immunizatigrall runs die, independently of the network sixe

Thus, the critical immunization that achieves eradication isAlso in this case it is possible to generalize this result for
related to the spreading rate and the epidemic threshold cfrbitrary connectivity exponentg [23].
the infection. Eq(15) is obviously valid only foa>X\., and In order to provide further support to the present mean-
it implies that the critical immunization allowing the com- field (sometimes called the deterministic approximatide-
plete protection of the networtaull prevalencgis increas-  scription, we study by means of numerical simulations the
ing with the spreading rate. behavior of the SIS model on the WS and the BA networks.
On the contrary, uniform immunization strategies on SFn these systems, because of the nonlocal connectivity, mean-
networks are totally ineffective. The presence of immunizafield predictions are expected to correctly depict the model's
tion depresses the infection’s prevalence too slowly, and it isehavior. In the present work we consider the paraméters
impossible to find any critical fraction of immunized indi- =3 and maximal disordep=1 for the WS network, and
viduals that ensures the infection eradication. The absence ﬁf,oz 5 andm=3 in the case of the BA network.
an epidemic threshold\¢=0) in the thermodynamic limit In the presence of uniform immunization, we can study
implies that whatever rescaling—\(1—g) of the spread- the system by looking at the infection’s prevalence in the
ing rate does not eradicate the infection except the gase stationary regiméendemic stateas a function of the immu-
= 1. In fact, by using Eq(10) we have that the immunization njty g. The uniform immunization is implemented by ran-

threshold is given by domly selecting and immunizingN nodes on a network of
fixed size N. Our simulations are implemented at a fixed
1 (k) spreading rate\ =0.25. The number of nodes range from
1-ge;=c — (16 N=10* to N=10°. We analyze the stationary properties of

(K2 the density of infected nodesy (the infection prevalenge
for different values of the immunizatiog Initially we infect
In SF networks with{k?)— o only a complete immunization half of the susceptible nodes in the network, and iterate the
of the network(i.e., g.= 1) ensures an infection-free station- "ules of the SIS model with parallel updating. The prevalence
ary state. The fact that uniform immunization strategies ardS computed averaging over at least 100 different starting
less effective has been noted in several cases of spatial hé@nfigurations, performed on at least 10 different realizations
erogeneity[1]. In SF networks we face a limiting case due to ©f the network. In Fig. (a), we show the behavior of the
the extremely highvirtually infinite) heterogeneity in con- reduced prevalencey/p, (Wherepy is the prevalence with-
nectivity properties. Also in this case finite networks presenfUt immunization as a function of the uniform immuniza-
an effective thresholdj.(N) depending on the number of tiongin the WS network. We observe that the prevalence of
nodesN. As for the epidemic threshold, however, we are notinfected nodes decays drastically for increasing immuniza-
in presence of an intrinsic quantity and we have tygN)  tion densitiessee Fig. 1b)]. In particular, we observe the
—1 in the thermodynamic limiN—. In the case of the BA Presence of a sharp immunization threshgid=0.385, in
model, inserting the expressigd?2) into Eq. (16), we ob-  fair agreement with the estimagg=0.36 from Eq|(15) with

serve that the immunization threshold scales as the values\=0.25 and the estimate,=0.16 from Ref[17].
In the biological case, this effect motivates the use of global

vaccination campaigns in homogeneous populations in order
1-go(N)~ 1 (17) to reach a density of immune individuals that secures from
¢ NIN(N)° major outbreaks or endemic states. On the contrary, the re-
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FIG. 2. (@ Reduced prevalencg,/po from computer simulations of the SIS model in the BA network with uniform and targeted
immunization, at a fixed spreading rate=0.25. A linear extrapolation from the largest valuesgofields an estimate of the threshaid
=0.16 in BA networks with targeted immunizatiofin) Check of the predicted functional dependepge-exd —1/mx(1—g)] for the SIS
model in the BA network with uniform immunization.

sults for the SF network, depicted in Figap, show a strik- IV. OPTIMIZED IMMUNIZATION STRATEGIES

ingly different behavior. Namely, the density of infected in-

dividuals decays slowly with increasing immunization, and it~ When fighting an epidemic in an heterogeneous popula-

would be null only for the complete immunization of the tion with a uniform vaccination scheme, it is necessary to

whole network g=1). Specifically, it follows from Eq(11)  vaccinate a fraction of the population larger than the estimate

that the SIS model on the BA network shows fpe1 and given by a simple(homogeneoysassumption[1]. In this

any A the prevalence case, it can be proved] thatoptimal vaccination programs
can eradicate the disease vaccinating a smaller number of
individuals. SF networks can be considered as a limiting case

pg=2exg—1/mr(1-g)]. (18 of heterogeneous systems and it is natural to look for spe-

cifically devised immunization strategies.

We have checked this prediction in Figb2 In other words,

the infection always reaches an endemic state if the network A. Proportional immunization

size is enough largksee Fig. 8)]. This points out the ab-

sence of an immunization threshold; SF networks are weak A straightforward way to reintroduce an intrinsic immu-

in face of infections, also after massive uniform vaccinationnization threshold in SF networks consists in using different
campaigns. fractions of immunized individuals according to their con-

FIG. 3. (a) Typical plots ofpy(t) as a function of time, averaged over 100 starting configurations, from computer simulations of the SIS
model in BA networks with uniform immunization for different valuesgfFrom top to bottomg=0.1, 0.14, 0.3, and 0.5. For all values
of g shown, the endemic state is reached in a sufficiently large netWimikypical plots ofp4(t) as a function of time, averaged over 100
starting configurations, for the SIS model in BA networks with targeted immunization for different valugesFoém top to bottomg
=0.1, 0.14, and 0.3.For the last value, larger than the critical immunization, all runs die for any network size.
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nectivity. Let us defingg, as the fraction of immune indi- optimal immunization problem in heterogeneous populations

viduals with a given connectiviti. If we impose the condi- [1], its efficiency is comparable to the uniform strategies in

tion networks with finite connectivity variance. In SF networks,
~ on the contrary, it produces an arresting increase of the net-
N=\k(1—gy)=const, (19 work tolerance to infections at the price of a tiny fraction of

immune individuals.

we observe that Eq(5) become identical and decoupled, | et us consider the situation in which a fractigrof the

defining effectively a homogeneous system. The density ofndividuals with the highest connectivity are successfully im-

infected individuals is the same for all connectivitiesand  munized. This corresponds, in the limit of a large network, to

an epidemic thresholdl,=1 is reintroduced in the system. the introduction of an upper threshdid, such that all nodes

This condition requires thak(1—g,) is constant for all with connectivityk>k, are immune. The fraction of immu-

groups of connectivityk at the threshold, implying thay,  nized individuals is then given by

~1—1/k\; i.e., a larger portion of individuals must be im-

munized in groups with larger connectivity. In this scheme 9= 2 P(K) 22)

the total density of immunized individuals can be easily cal- Kk, '

culated by averagingg, over the various connectivity

classes. The fraction of nonimmunized individuals-g, @ relation that rendets an implicit function ofg. The pres-

cannot be larger than one, thus we focus only on classes withce of the cut-ofk,(g) defines the new average quantities

connectivity such that the reproductive numbier\ L. To  (k);=3S¥kP(k) and (k?)==kk?P(k), which are on their

eradicate the infection, we need thg{=1—1/k\ in all  turn function ofg. At the same time, all links emanating from

classes with connectiviti>\ ", defining the critical frac- immunized individuals can be considered as if they were

tion of immunized individuals as removed. The probabilityp(g) that any link will lead to an

immunized individual is then given by

> |1 ! ) P(k) (20)
9c= A .
ot MK > kP(k)
k>k(9)

In order to perform an explicit calculation for the BA model, p(g)=————, (23
we use again the continuokspproximatior{5]. In this case E kP(k)
we obtain that K

ge=(m\)2. (21  and if we consider that this fractign(g) of links are effec-

tively removed, the new connectivity distribution after the
This result can be readily extended to SF networks with arimmunization of a fractiorg of the most connected individu-
bitrary y values, and it is worth remarking that this recipe isals is[27]
along the lines of that introduced in the immunization of

heterogeneously populated groufdd. Recently, a similar k‘ q
strateg%/ has be)éznp pf.)]t forwa?d inhlgém] by p?/oposing to Pg(k):q;k P(q)( k>(1_p)kpq “ (24)
cure with proportionally higher rates the most connected
nodes. The new distributionafter cut-off introduction and link re-
mova) yields the first two momentsk),=(k)(1—p) and
B. Targeted immunization (k?)g=(k*){(1—p)?+(k)p(1—p) [27]. By recalling Eq.

(10), the critical fractiong, of immune individuals needed to

While proportional immunization schemes are effective NS radicate the infection will be given by the relation

finally introducing a well-defined immunization threshold,

the very peculiar nature of SF networks allows to define (k2 <k2>
more efficient strategies based on the nodes’ hierarchy. In —gcz—t[l—p(gc)]er(gc):)Cl. (25)
particular, it has been shown that SF networks possess a <k>gc (Kt

noticeable resilience to random connection failJ@&s—27,

which implies that the network can resist a high level ofAn explicit calculation for the BA network in the continuous
damage(disconnected links without loosing its global con- K approximation yields that the density of immunized nodes
nectivity properties; i.e., the possibility to find a connectedis related to the connectivity threshold as

path between almost any two nodes in the system. At the .

same tlme, SF networks are strongly affected by selective gzl_f tP(k)dk= mzkt‘z. (26)
damage; if a few of the most connected nodes are removed, m

the network suffers a dramatic reduction of its ability to carry

information[25—27. Applying this argument to the case of BY inverting this relation we obtain that the connectivity
epidemic spreading, we can devis¢aagetedimmunization  threshold isk;=mg~ ', yielding that

scheme in which we progressively make immune the most 1 .

h|gh|)_/ connectec_j noc_jes, ie. th_e ones more likely to spread p(g)= _( 1_[ tkP(k)dk) g2 (27)
the disease. While this strategy is the simplest solution to the 2m m
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As well, we can obtaink);=2m and (k?);=2m?In(g"*? 1.0 @ - —— —
ask,=mg 2. By inserting these values into E(R5) ©——© Uniform Immunization
we obtain the approximate solution for the immunization 0s | &—* Targeted Immunization |
threshold in the case of targeted immunization as
06 | 1
gc=exp(—2/mn). (289 K3
~
>
. . . L < 04 |08 ]
This clearly indicates that the targeted immunization pro-
gram is extremely convenient in SF networks where the criti- 04
cal immunization is exponentially small in a wide range of 02 f .
spreading rates. Also in this case, the present result can be 0 0 001
generalized for SF networks with arbitrary connectivity ex- 0.0 . L . .
ponenty. 00 01 02 03 04 05
In order to test the targeted immunization scheme we have g

implemented numerical simulations of the SIS model on the

WS and BA networks by immunizing t nodes with th
S ° y g thgN node c of the SIS model in a portion of a real Internet map with uniform

highest connectivity. Note that, for a given network, this " X . A ) .
method is essentially deterministic: Once we identify the hi-Main Ploy and targetedinsey immunization at a fixed spreading
erarchy in the node’s connectivity distribution, we proceed torate A=0.25. We only consider values of the immunization for
. Lo which almost all the runs survive up to the end. This explains the
protect those .nOdes on tqp of the list. Slmul._’;ltlons are Pelghort range of values af shown for the targeted immunization
formed at a fixed spreading rate=0.25. In Fig. 1a) we g
report the behavior of the prevalence of infected nodes for
the WS network with targeted immunization; the results corthese procedures should rely on the identification of the most
responding to the BA graph are plotted in Figa)2 In the  connected individuals. The protection of just a tiny fraction
case of the WS network, the behavior of the prevalence as @f these individuals raises dramatically the tolerance to in-
function of g is equivalent in the uniform and targeted im- fections of the whole population _ .
munization procedures. The connectivity fluctuations are A practical example is provided by the spreading of vi-
small, and the immunization of the most connected nodes i&/Ses in the Interngli28]. The SF nature of this network is

equivalent to the random choice of immune nodes. This contN€ outcome of a connectivity redundancy, which is quite
firms that targeted strategies do not have a particular effivelcome because it ensures a greater error tolerance than in
ciency in systems with limited heterogeneity. On the con-€SS connected networks. On the other hand, despite the large
trary, in the case of the BA network, we observe a drastid!Se of antivirus software that is available in the market

AT . . within days or weeks after the first virus incident report, the
variation in the prevalence behavior. In particular, the preva;

o average lifetime of digital epidemics is impressively large
lence suffers a very sharp drop and exhibits the onset of ‘."‘&0—1%1 months [16]. ?\Iumeﬁcal simulationps of they SIS?

|mmL_|n|zat|on t_hreshold_ at_)o_ve Wh'Ch. no endemic st_ate 'Snodel on real maps of the Internet can provide further sup-
possible(zero infected individua)s A linear extrapolation port to our picture. The SIS model is, in fact, well suited to
from the largest values df yields an estimate of the very gescribe Domain Name System—cache computer vifi@gs
Convenient thresholgczo.lﬁ Th|S def|n|te|y ShOWS that SF (the So_Ca”ed “natura' Computer Viruses“and diﬁerent
networks are highly sensitive to the targeted immunization ofjigita| viruses can be modeled by considering the random
a small fraction of the most connected nodisse Fig. 22  neighbor version of the modg19]); i.e. infected emails can
and Fig. 3b)]. While these networks are particularly weak in be sent to different nodes that are not nearest neighbors. The
face of infections, the good news consist in the possibility tomap considered here, provided by the National Laboratory
devise immunization strategies which are extremely effecfor Applied Network ResearciNLANR) and available at
tive. the web site http://www.moat.nlanr.net/Routing/rawdata/,
contains 6313 nodes and 12362 links, corresponding to an
average connectivityk)=3.92. The connectivity distribu-
tion is scale-free, with a characteristic expongrt2.2[12].

The present results indicate that the SF networks’ suscef@ur simulations are performed at a fixed spreading rate
tibility to epidemic spreading is reflected also in an intrinsic =0.25, averaging over at least 2500 different starting con-
difficulty in protecting them with local—uniform— figurations. We implement both the uniform and the targeted
immunization. On a global level, uniform immunization poli- immunization procedures. The results obtained clearly indi-
cies are not satisfactory and, in analogy with disease spreadate that the behavior is completely analogous to that found
ing in heterogenous populations, only targeted immunizatiomn the BA network. Fig. 4 illustrates that, while uniform
procedures achieve the desired lowering of epidemic outimmunization does not allow any drastic reduction of the
breaks and prevalence. This evidence radically changes thiefection prevalence—the immunization of 25% of the nodes
usual perspective of the regular epidemiological frameworkreduces by less than a factor 1/2 the relative prevalence—the
Spreading of infectious or polluting agents on SF networkstargeted immunization drastically removes the occurrence of
such as food or social webs, might be contrasted only by @andemic states even at very low value of the immunization
careful choice of the immunization procedure. In particular,parameter. The fact that SF

FIG. 4. Reduced prevalengg /p, from computer simulations

V. DISCUSSION AND CONCLUSIONS
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networks can be properly secured only by a selective immutheless, the striking effectiveness of targeted immunization
nization, points out that an optimized immunization of theindicates that control and prevention campaigns should be
Internet can be reached only through a global immunizatiorstrongly focused at the most promiscuous individuals. These
organization that secures a small set of selected high-traffiepresent the most connected nodes of the network and are
routers or Internet domains. Unfortunately, the self-organizedhus the key individuals in the spreading of the infection.
nature of the Internet does not allow to easily figure out how While the simple SIS model is very instructive, many
such an organization should operate. other ingredients should be considered in a more realistic

The present results also appear to have potentially interrepresentation of real epidemift,2]. One would also want
esting implications in the case of human sexual disease cote add simple rules defining the temporal patterns of net-
trol [1,30]. Most sexually transmitted diseases cannot beworks such as the frequency of forming new connections, the
characterized without including the noticeable differences ofctual length of time that a connection exists, or different
sexual activity within a given population. Epidemic model- types of connections. These dynamical features are highly
ing is thus based on partitioning population groups by thevaluable experimental inputs which are necessary ingredients
number of sexual partners per unit tirffig. This implicitly  in the use of complex networks theory in epidemic modeling.
corresponds to the knowledge of the probability distribution
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